Spinal synthesis of estrogen and concomitant signaling by membrane estrogen receptors regulate spinal κ- and μ-opioid receptor heterodimerization and female-specific spinal morphine antinociception.

نویسندگان

  • Nai-Jiang Liu
  • Sumita Chakrabarti
  • Stephen Schnell
  • Martin Wessendorf
  • Alan R Gintzler
چکیده

We previously demonstrated that the spinal cord κ-opioid receptor (KOR) and μ-opioid receptor (MOR) form heterodimers (KOR/MOR). KOR/MOR formation and the associated KOR dependency of spinal morphine antinociception are most robust during proestrus. Using Sprague Dawley rats, we now demonstrate that (1) spinal synthesis of estrogen is critical to these processes, and (2) blockade of either estrogen receptor (ER) α-, β-, or G-protein-coupled ER1 or progesterone receptor (PR) substantially reduces KOR/MOR and eliminates mediation by KOR of spinal morphine antinociception. Effects of blocking ERs were manifest within 15 min, whereas those of PR blockade were manifest after 18 h, indicating the requirement for rapid signaling by estrogen and transcriptional effects of progesterone. Individual or combined blockade of ERs produced the same magnitude of effect, suggesting that they work in tandem as part of a macromolecular complex to regulate KOR/MOR formation. Consistent with this inference, we found that KOR and MOR were coexpressed with ERα and G-protein-coupled ER1 in the spinal dorsal horn. Reduction of KOR/MOR by ER or PR blockade or spinal aromatase inhibition shifts spinal morphine antinociception from KOR dependent to KOR independent. This indicates a sex steroid-dependent plasticity of spinal KOR functionality, which could explain the greater analgesic potency of KOR agonists in women versus men. We suggest that KOR/MOR is a molecular switch that shifts the function of KOR and thereby endogenous dynorphin from pronociceptive to antinociceptive. KOR/MOR could thus serve as a novel molecular target for pain management in women.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of μ-/κ-opioid receptor heterodimer is sex-dependent and mediates female-specific opioid analgesia

Sexually dimorphic nociception and opioid antinociception is very pervasive but poorly understood.We had demonstrated that spinal morphine antinociception in females, but not males, requires the concomitant activation of spinal μand κ-opioid receptors (MOR and KOR, respectively). This finding suggests an interrelationship between MOR and KOR in females that is not manifest in males. Here,we sho...

متن کامل

Estrogens Suppress Spinal Endomorphin 2 Release in Female Rats in Phase with the Estrous Cycle.

BACKGROUND/AIMS Male and female rats differ in their ability to utilize spinal endomorphin 2 (EM2; the predominant mu-opioid receptor ligand in spinal cord) and in the mechanisms that underlie spinal EM2 analgesic responsiveness. We investigated the relevance of spinal estrogen receptors (ERs) to the in vivo regulation of spinal EM2 release. METHODS ER antagonists were administered directly t...

متن کامل

Sexually dimorphic recruitment of spinal opioid analgesic pathways by the spinal application of morphine.

Current evidence for sex-based nociception and antinociception, largely confined to behavioral measures of pain sensitivity, chronic pain syndromes, and analgesic efficacy, provides little mechanistic insights into biological substrates causally associated with sexual dimorphic pain experience. Spinal cord has been shown to be a central nervous system region in which regulation of opioid antino...

متن کامل

Spinal interaction between μ and δ opioid receptors in naive and morphine-tolerant rats

Background The role of δ opioid receptors in opioid antinociception and tolerance development is still unclear. In the spinal cord of morphine-tolerant mice δ receptor ligands given intrathecally (i.t.) differently influenced the antinociceptive effect of the μ agonist D-Ala2-methyl-glycinol (DAMGO). The δ1 agonist D-Pen2,5-enkephalin (DPDPE) inhibited, the δ2 agonist deltorphin II did not alte...

متن کامل

Behavioural and morphological evidence for the involvement of glial cell activation in delta opioid receptor function: implications for the development of opioid tolerance

Previous studies have demonstrated that prolonged morphine treatment in vivo induces the translocation of delta opioid receptors (deltaORs) from intracellular compartments to neuronal plasma membranes and this trafficking event is correlated with an increased functional competence of the receptor. The mechanism underlying this phenomenon is unknown; however chronic morphine treatment has been s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 33  شماره 

صفحات  -

تاریخ انتشار 2011